

ORGANIZZAZIONE DELLA CAMPAGNA DI MISURA DI AGENTI CHIMICI AERODISPERSI

Metodo di valutazione del rischio chimico secondo la EN 689

Argomenti

- Studio preliminare
- Scelta dei parametri e metodi normativi di riferimento
- Scelta del campionamento
- Conformità alla EN 689

Studio preliminare

Identificazione degli agenti chimici:

- · materie prime,
- prodotti utilizzati,
- eventuali prodotti finali, ecc.

Documenti utili: Schede di Sicurezza.

2

Fattori di lavoro:

- Mansioni svolte e turni di lavoro;
- Macchinari e tecniche utilizzate;
- Configurazione del luogo di lavoro (planimetrie);
- Dispositivi di protezione.

Documenti utili: Documento di Valutazione dei Rischi.

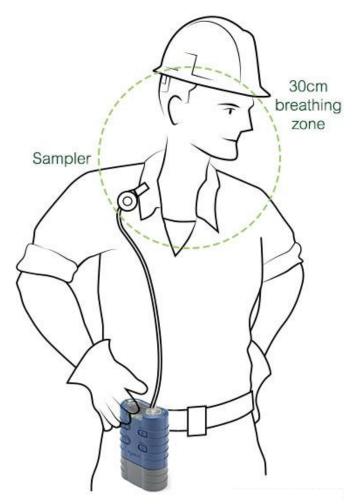
Similar Exposition Group

 Lavoratori soggetti ad un profilo di esposizione simile possono essere uniti in gruppi detti SEG.

• Questo consente di ridurre il numero di misurazioni necessarie: se l'esposizione di alcuni lavoratori appartenenti a un SEG risulta conforme ai limiti, la si considera conforme per tutti gli altri lavoratori dello stesso SEG.

Campionamenti ambientali e personali

Campionamenti personali (raccomandato dalla 689)


- Dispositivi di campionamento fissati all'abbigliamento del lavoratore (breathing zone).
- Sono maggiormente rappresentativi dell'esposizione professionale.

Campionamenti ambientali (statici)

- Il dispositivo di campionamento è posizionato al centro di un'area di lavoro, oppure vicino alla fonte di esposizione.
- Meno rappresentativo della reale esposizione professionale dei lavoratori.

Campionamenti personali

I dispositivi di campionamento sono posizionati all'interno di un'area emisferica di circa 30 cm attorno al naso (zona di respirazione o breathing zone).

Campionamento attivo e passivo

Campionamento attivo

L'aria è aspirata tramite delle **pompe di aspirazione** e viene convogliata verso un dispositivo di campionamento.

Supporti di campionamento:

- Filtri (analiti nel particolato);
- Materiali adsorbenti (analiti in fase gassosa);
- Analizzatori automatici.

Campionamento passivo

Il campionamento avviene per semplice diffusione dell'aria attraverso una superficie.

Gli analiti vengono trattenuti da un supporto assorbente.

• Permette il campionamento di agenti chimici in sola forma gassosa.

Campionamento attivo e passivo

Campionamento attivo

Il lavoratore deve portare con se:

- pompa aspirante,
- tubi di collegamento,
- dispositivo di campionamento.

Campionamento passivo

Vantaggi:

- maggiore comodità per il lavoratore;
- può essere usato per campionamenti ambientali (statici) di lunga durata.

Svantaggi:

 minore accuratezza della misurazione.

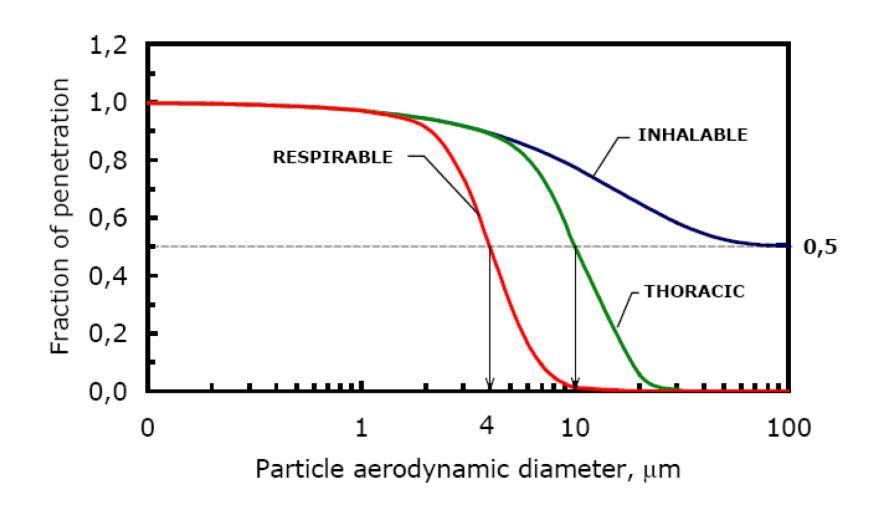
Stato fisico degli agenti chimici nell'ambiente di lavoro

Particelle solide

- **Polveri**: particelle solide disperse nell'aria. Hanno un'origine meccanica (abrasione, taglio, levigatura). Il particolato può essere suddiviso, in base alla dimensione, in diverse frazioni: inalabile, respirabile.
- **Fumi**: sono particelle di piccolissime dimensioni (< 1 μm). Si formano quando un materiale solido viene vaporizzato ad alte temperature (es.: saldatura, taglio laser), oppure in processi di combustione (es.: motori Diesel).
- **Fibre**: particelle che presentano una lunghezza maggiore di 5 μ m e un diametro minore di 3 μ m (amianto).

Particelle liquide

Nebbie: sono microscopiche goccioline di liquido disperse nell'aria.


Esempi: nebbie oleose, aerosol di acido solforico, ecc.

Forma gassosa

Gas e vapori di liquidi volatili.

Polveri: frazioni inalabile e respirabili

Preselettori per polveri inalabili e respirabili

Preselettore per polveri inalabili

Ciclone GS-3 per polveri respirabili

Polveri: frazioni inalabile e respirabili

Polveri inalabili / respirabili

- Lavorazione del legno,
 Silice libera cristallina.
- Lavorazione meccaniche,
- Fonderie,
- Edilizia

Frazione inalabili

Carbonio **Elementare**

Metalli

Nebbie olio

Frazione respirabile

Silice libera cristallina

Metalli

Campionamento di agenti chimici nella fase gassosa

Esempi di **fiale assorbenti** di diverso tipo:

Analita	Metodo	Supporto
Idrocarburi	NIOSH 2015	Carbone attivo
Formaldeide	NIOSH 2016	Fiala derivatizzata
Fenolo	OSHA 32	XAD 07
Ammine	NIOSH 2007	Gel di silice
•••		

2016

Esempio di un metodo METHOD: 2016, Issue 2

H₂C=O

MW: 30.03

CAS: 50-00-0

RTECS: LP8925000

EVALUATION: FULL

Issue 1: 15 January 1998 Issue 2: 15 March 2003

OSHA: 0.75 ppm; 2 ppm STEL

NIOSH: 0.016 ppm; C 0.1 ppm; carcinogen

ACGIH: C 0.3 ppm; suspected human carcinogen

(1 ppm = 1.23 mg/m³ @ NTP)

Gas; BP -19.5 °C; specific gravity 1.067

(air = 1); explosive range 7 to 73% (v/v) in

NAMES & SYNONYMS: methanal; formalin (aqueous 30 to 60% w/v formaldehyde); methylene oxide

SAMPLING		MEASUREMENT	
SAMPLER:	CARTRIDGE	TECHNIQUE:	HPLC, UV DETECTION
	(Cartridge containing silica gel coated with 2,4-dinitrophenylhydrazine)	ANALYTE:	2,4-dinitrophenylhydrazone of formaldehyde
FLOW RATE:	0.03 to 1.5 L/min	EVERACTION	
VOL-MIN:	1 L @ 0.25 mg/m³	EXTRACTION:	Elution with 10 mL of carbonyl-free acetonitrile
-MAX:	15 L @ 2.5 mg/m³	INJECTION	
SHIPMENT:	Place caps onto cartridge. Ship on ice.	VOLUME:	20 μL
SAMPLE STABILITY:	34 days @ 5 °C [1]	MOBILE PHASE:	45% acetonitrile/55% water (v/v), 1.3 mL/min
BLANKS:	2 to 10 field blanks per set 6 to 10 media blanks per set	COLUMN:	$3.9~x$ 150-mm, stainless steel, packed with 5-µm C-18, Symmetry $^{\text{TM}}$ or equivalent
ACCURACY		DETECTOR:	UV @ 360 nm
RANGE STUD	IED: 0.025 to 2.45 mg/m³ (22-L samples) [2]	CALIBRATION:	Samplers fortified with standard solution of formaldehyde in water
BIAS:	+4.4%	RANGE:	0.23 to 37 µg per sample [1,2]
OVERALL PRECISION (S): 0.057 [1,2]	ESTIMATED LOD:	0.07 µg/sample [1]
FRECISION (S	,,,). 0.007 [1,2]	PRECISION (S.):	0.032 @ 1.0 to 20.0 µg/sample [1]
ACCURACY:	±19.0%	(0,).	G 10 Total billion [1]

Metodi normati di riferimento

NIOSH (National Institute for Occupational Safety and Health);
 https://www.cdc.gov/niosh/nmam/default.html

• **OSHA** (Occupational Safety and Health Administration); https://www.osha.gov/chemicaldata/sampling-analytical-methods

• Norme internazionali e nazionali (es.: ISO, UNI).

Valori limite di esposizione professionale

DL 81/2008

Capo I: agenti chimici -> Allegato XXXVIII

Capo II: agenti cancerogeni e mutageni ->

Allegato XLII

Capo III: amianto

Altre istituzioni di riferimento:

- ACGIH (American Conference of Governmental Industrial Hygienists)
- OSHA (Occupational Safety and Health Administration)
- MAK Commission

Valori limite di esposizione professionale

TWA

STEL

Sono riferiti alla concentrazione media durante l'intero turno di lavoro (8 ore).

Riferiti ad un tempo di esposizione di 15 minuti.

Durata dei campionamenti

Durata minima: 2 h.

• La durata del campionamento viene **stabilita in base a diversi fattori**: valore limite, LOQ del metodo, variabilità dei fattori di esposizione, ecc.

Obiettivo: LOQ metodo < 10% limite espositivo

• In caso di fattori di lavoro non costanti durante il turno di lavoro la durata del campionamento dovrebbe essere il più possibile vicina alla durata del turno completo di lavoro (8 h).

Esposizione contemporanea a più agenti chimici

• **DL 81/2008, art. 223, p.to 3**: «Nel caso di attività lavorative che comportano l'esposizione a più agenti chimici pericolosi, i rischi sono valutati in base al rischio che comporta la combinazione di tutti i suddetti agenti chimici.»

Indice di esposizione:
$$I_E = \sum_{i=1}^{n} \frac{E_i}{OELV_i}$$

Valutazione preliminare secondo la EN 689

NUMERO DI MISURAZIONI effettuate durante la valutazione preliminare			
3	Tutti i risultati sono inferiori al 10% del VLEP ↓ CONFORMITÀ	Almeno uno dei risultati è superiore al 10% del VLEP, ma tutti i risultati sono inferiori al limite nel suo totale NESSUNA DECISIONE	Almeno una delle misurazioni ha fornito un risultato superiore al VLEP NON CONFORMITÀ
4	Tutti i risultati sono inferiori al 15% del VLEP ↓ CONFORMITÀ	Almeno uno dei risultati è superiore al 15% del VLEP, ma tutti i risultati sono inferiori al limite nel suo totale NESSUNA DECISIONE	Almeno una delle misurazioni ha fornito un risultato superiore al VLEP NON CONFORMITÀ
5	Tutti i risultati sono inferiori al 20% del VLEP ↓ CONFORMITÀ	Almeno uno dei risultati è superiore al 20% del VLEP, ma tutti i risultati sono inferiori al limite nel suo totale NESSUNA DECISIONE	Almeno una delle misurazioni ha fornito un risultato superiore al VLEP NON CONFORMITÀ

Test statistico secondo la EN 689

- Se la valutazione preliminare non ha consentito di prendere una decisione, è necessario proseguire l'indagine in modo da poter applicare il test statistico di conformità.
- Sono necessarie **almeno 6 misurazioni** (<u>sono comprese quelle dell'indagine preliminare</u>).
- Il test statistico stabilisce, con il 70% di confidenza, che meno del 5% delle esposizioni nel SEG sia inferiore al VLEP.

Misurazioni periodiche

Dopo aver eseguito il test statistico è possibile stabilire l'intervallo per la rivalutazione dell'esposizione con nuove misurazioni.

Media delle misurazioni < 0.1 VLEP	36 mesi	
Media delle misurazioni < 0.25 VLEP	24 mesi	
Media delle misurazioni < 0.5 VLEP	18 mesi	
Media delle misurazioni > 0.5 VLEP	12 mesi	

Al termine dell'intervallo stabilito è necessario ripetere la valutazione preliminare, e se necessario il test statistico.

Studio del DVR, SDS dei prodotti usati, ecc.

Piano di monitoraggio

Campionamento e analisi

Relazione tecnica di valutazione

Vuoi saperne di più?

Andrea Piazzalunga

Referente tecnico commerciale

@mail: andrea.piazzalunga@indam.it

@mail: info@indam.it

Telefono: 0302585203

Ensuring a healthier world

Water & Life Lab

ANALYTICAL LABORATORIES

- Bergamo -

F.O.R.I.A FIT FOR ORGANIZATION PETAIL INTERNATIONAL AGENC

- Bergamo -

- Foggia -

- Bari -

Indam Laboratori

Nel cuore della Lombardia

Indam Laboratori è un istituto di analisi accreditato fondato nel 1978, con più di 1.100 parametri accreditati, che opera grazie al coordinamento interno di diversi laboratori dedicati all'analisi dell'inquinamento ambientale. È parte di Groupe Carso dal 2013.

- Fatturato 2024, oltre **9 milioni di euro**.
- Più di **100.000** campioni lavorati/anno.
- Accreditamento UNI CEI EN ISO/IEC 17025:2018
- Sistema di Gestione Qualità certificato.

PRINCIPALI CLIENTI

Garantire un mondo più sano

Ensuring a healthier world

