

Valutazione del rischio chimico espositivo: guida pratica per una corretta impostazione

2 luglio 2025

Dott. Tommaso Castellan t.castellan@normachem.it

Chi sono?

Tommaso Castellan

Technical & Academy Manager presso Normachem

t.castellan@normachem.it

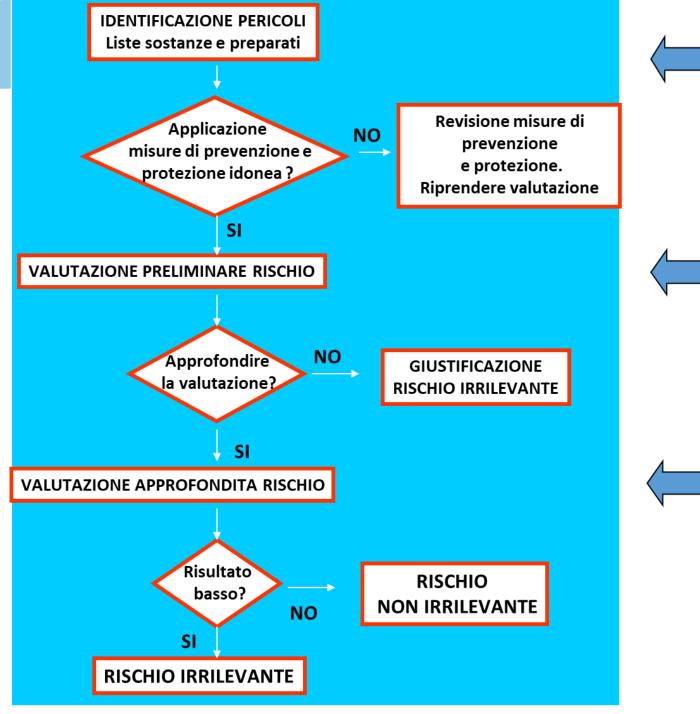
Cos'ho studiato?

✓ Laurea magistrale in Chimica Industriale e Master STePS

Di cosa mi occupo?

- ✓ Valutazione del rischio chimico e CMR(ED)
- ✓ Correlazioni REACH e 81/08
- ✓ Trasporto merci pericolose (ADR, RID, IMDG, IATA)
- ✓ Docente UNIPD, UNIVE, UNINA

Sommario


- ✓ Il processo di valutazione del rischio chimico e CMR
- ✓ Le principali criticità e difficoltà operative
- ✓ I Rischi emergenti
- ✓ Conclusioni



Knowledge for Change

Il processo di valutazione del rischio chimico e CMR

Valutazione dei RISCHI preliminare

Valutazione dei RISCHI approfondita

MISURAZIONI AMBIENTALI ALGORITMI / MODELLI DI CALCOLO

D.Lgs. 81/08 Titolo IX Capo II

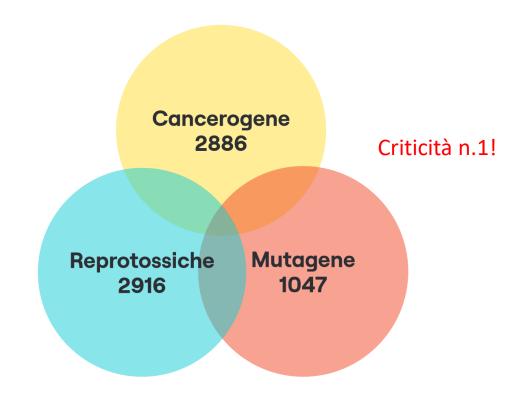
Agenti Chimici Pericolosi (ACP)

Capo I Art. 223 - Valutazione dei Rischi

[...] valuta **i rischi** per la sicurezza e la salute dei lavoratori [...]

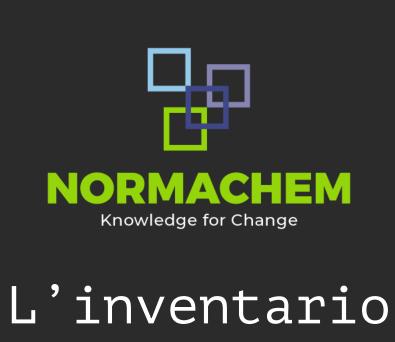
CMR

Capo II Art. 236 - Valutazione del Rischio


[...] effettua una <u>valutazione</u> dell'esposizione a agenti cancerogeni o mutageni [...]

Quanti sono? - al 2 ottobre 2024

ECHA C&L Inventory: 266.822 sostanze


I reprotossici nel REACH

- ✓ Restrizioni:
 - ❖ n. 73 (NMP DNEL)
 - n. 76 (N,N-dimetilformammide DNEL)
 - ❖ n. 80-81 solventi aprotici

Criticità n.2!

Passo n.1 - Creare un inventario

Criticità n.3!

Completo (sostanze presenti e generate) Aggiornato (SDS e dati almeno del 2024)

Corretto
(informazioni allo
stato dell'arte)

Digitale (fruibile, filtrabile, ..)

SDS

Hazard statements

H302: Harmful if swallowed.
Methemoglobin formation hazard
H360F: May damage fertility.
Testes
H371: May cause damage to organs <or affected,="" all="" if="" known="" organs="" state=""> <state cause="" conclusively="" exposure="" hazard="" if="" is="" it="" no="" of="" other="" proven="" route="" routes="" that="" the="">.</state></or>
blood
H373: May cause damage to organs <or affected,="" all="" if="" known="" organs="" state=""> through prolonged or repeated exposure <state cause="" conclusively="" exposure="" hazard="" if="" is="" it="" no="" of="" other="" proven="" route="" routes="" that="" the="">.</state></or>
Blood, spleen, liver

Componenti

Natura chimica

3.2 Miscele

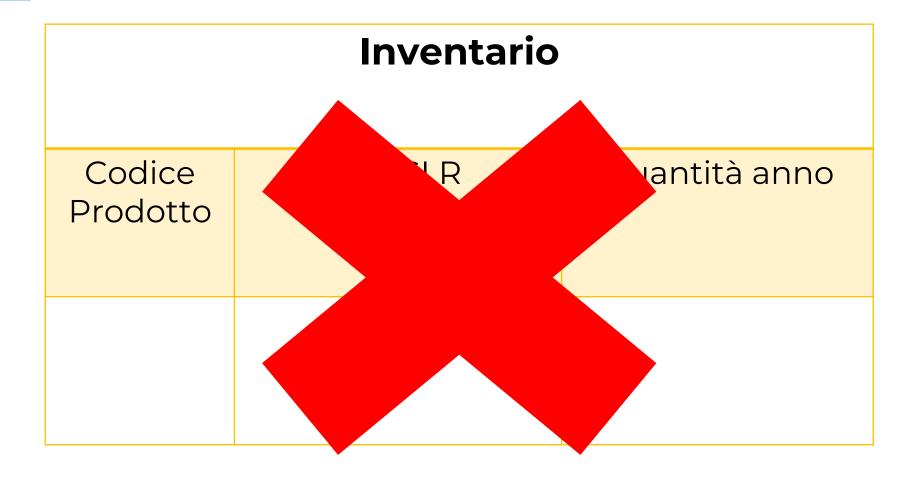
SEZIONE 3: composizione/infori

H411: Toxic to aquatic life with long lasting effects.

Nome Chimico	N. CAS N. CE N. INDICE Numero di registrazione	Classificazione	Concentrazion e (% w/w)
Aromatic amino polyol-Orange	Non assegnato	Aquatic Chronic 3; H412	>= 50 - < 70
2,2' -oxybisethanol	111-46-6 203-872-2 603-140-00-6 01-2119457857-21- 0078	Acute Tox. 4; H302	>= 1 - < 10
4,4'-Diaminodiphenyl Sulphone	80-08-0 201-248-4 612-084-00-1	Acute Tox. 4; H302	>= 1 - < 10

I CMR del settore stampaggio plastica

Agenti chimici acquistati


- Pigmenti (arancio, rosso, giallo, ..)
- Additivi plastificanti (ftalati)
- Additivi (acido borico, cresoli, imidazoli, perossidi)
- Cariche (silice, biossido di titanio)

Agenti chimici generati

- Monomeri (Acrilonitrile, butadiene nell'ABS)
- Agenti sviluppati per riscaldamento degradazione

INVENTARIO - COME ???

INVENTARIO - COME ??? ... 2

Sostanze						
Nome Chimic o	Identificatori + Cod. Aziendale	Classificazione 67/548/CEE 1272/2008/CE	Tonn/anno, frequenza utilizzo, massimo utilizzo al gg	Limiti di esposizione professionale	Class. Seveso	
INDEX CE IUPAC	N.CAS N.CE N. INDEX					

Criticità n.3!

Miscele								
Nome Commercia le + Cod. Aziendale	Sostanza	Range %	Identificatori	Class. 67/548/CEE 1272/2008/CE	Tonn/anno, frequenza utilizzo, massimo utilizzo al gg	Limiti di esposizione professional e	Class. Seves o	Class. Miscela
XXX	Sostanza 1		N.CAS N.CE N. INDEX					
	Sostanza 2		=					
	Sostanza n.		=					

D.Lgs. 81/08 Titolo IX Capo II

Art. 235 - Sostituzione e Riduzione

2. Se non è tecnicamente possibile sostituire l'agente cancerogeno, mutageno o la sostanza tossica per la riproduzione il datore di lavoro provvede affinché la produzione o l'utilizzazione dell'agente cancerogeno o mutageno avvenga in un sistema chiuso purché tecnicamente possibile

SISTEMA CHIUSO

un processo/sistema in cui la sostanza è isolata dal lavoratore:

- rimane all'interno di un contenitore/tubo chiuso
- nessuna discontinuità nel sistema

L'esposizione non è prevista (o trascurabile)

Carico

Impiego

Scarico

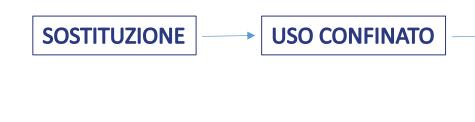
USO IN SISTEMA CHIUSO:

Se tecnicamente possibile, per tutto il ciclo di vita della sostanza (*rifiuti inclusi*)

Criticità n.4!

D.Lgs. 81/08 Titolo IX Capo II

Agenti Chimici Pericolosi (ACP)


Capo I Art. 223 - Valutazione dei Rischi

[...] valuta **i rischi** per la sicurezza e la salute dei lavoratori [...]

CMR

Capo II Art. 236 - Valutazione del Rischio

[...] effettua una <u>valutazione</u> dell'esposizione a agenti cancerogeni o mutageni [...]

ESPOSIZIONE CONTROLLATA

EN 689:2019

MISURAZIONE DELL'ESPOSIZIONE

La misura dell'esposizione

I problemi ad oggi:

- ✓ Tantissime sostanze con limiti di esposizione ma altrettante con mancanza di limiti (c'è il REACh – DNEL se presente dossier di registrazione – anche cutaneo)
- ✓ Mancanza di metodi tante sostanze nuove

Le soluzioni:

- ✓ Derivare limiti;
- ✓ Sviluppare metodi;
- ✓ Usare modelli di stima dell'esposizione (in sviluppo .. ma alcuni sono robusti)
- ✓ Metodi di semplificazione: es raggruppare le attività, usare dei traccianti di misura, ...

Casi Studio

I principali errori nella valutazione dell'esposizione:

- Sostanze troppe generiche (classici COV e polveri);
- Limiti di esposizione non allo stato dell'arte (ACGIH, DNEL, ..);
- Numero di ripetizioni non congrue (3 minimo);
- Campionamenti ambientali e non personali;
- Frazioni campionate non corrette (es. fumi diesel);
- Limiti di rilevabilità non abbastanza bassi (es. cromo VI, acido solforico);
- Esposizione accettabile non è «RISCHIO IRRILEVANTE» / «NON ESPOSTO»;
- La valutazione dell'esposizione non è la valutazione del rischio e viceversa.

Criticità n.5!

La valutazione dell'EXP e del rischio

Decidere cosa campionare e cosa no

Valutare se usare delle stime modellistiche

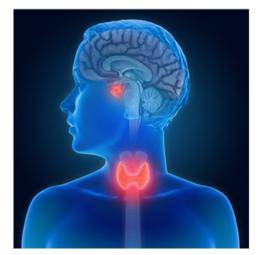
Valutare e giudicare l'esposizione ESPOSTO POTENZIALMENTE ESPOSTO NON ESPOSTO

Criticità n.6!

I rischi emergenti

Effetti causati dagli ED

Alcuni degli effetti causati da tale interferenza con il sistema endocrino sono:


- Tossicità per lo sviluppo con incremento di malformazioni
- Interferenza coi meccanismi riproduttivi
- Incrementato rischio di cancro
- Alterata funzionalità del sistema immunitario e del sistema nervoso

GLI ED .. Capo I o Capo II?

- Sono sostanze per le quali è possibile (in linea teorica) derivare un DNEL (quindi non un DMEL)
- I valori calcolati si potrebbero assestare in un range intermedio tra i DNEL dei reprotossici e i DMEL dei cancerogeni (molti sono anche REPR)
- Sono sostanze che ai sensi delle normative di prodotto vengono considerati come i CMR/PBT/..

Capo I o Capo II???

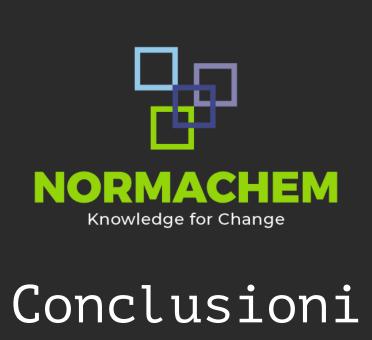
Scienza o Normativa

Nanomateriali - sicurezza occupazionale

D.Lgs.81/08

CAMPO DI APPLICAZIONE (capo I o II?)

Le nanoforme non sono citate esplicitamente nel titolo IX del D.Lgs.81/08, il capo applicabile dipende da ciascuna nanoforma


VALUTAZIONE DEL RISCHIO

- La base normativa è la stessa fra nanoforme e bulk → stessa metodologia generale ma con peculiarità in più derivanti dalle caratteristiche fisico-chimiche delle nanoforme
- Molte difficoltà:
 - Spesso mancano informazioni sulla pericolosità della nanoforma e sulla relazione dose-risposta
 - Diverse proposte per metodi specifici di valutazione, ma nessuno è validato in maniera definitiva
 - Valutazione dell'esposizione «multi-parametro» (dimensione, forma, numero di particelle, caratterizzazione chimica, ecc.) → utilizzo di più strumenti per la stessa nanoforma
 - Mancanza di metodi di campionamento/analisi validati

VDR sostanza in nanoforma ≠ VDR sostanza in bulk

Le criticità dei REPROTOSSICI

Le criticità:

- ✓ Criticità n.1 CM R sono tanti e cambiano velocemente
- ✓ Criticità n.2 hanno varie implicazioni REACh
- ✓ Criticità n.3 creare un inventario e mantenerlo
- ✓ Criticità n.4 by products
- ✓ Criticità n.5 la valutazione dell'esposizione e le stime
- ✓ Criticità n.6 la qualifica del rischio
- ✓ Criticità n.7 i rischi emergenti

Conclusioni

- ✓ Valutare il rischio e l'esposizione degli ACP e dei CMR è un'attività molto specialistica e complessa
- ✓ L'introduzione dei «R» ha fatto ricadere un numero notevole di aziende in questo adempimento
- ✓ È fondamentale partire dal REACH e CLP come fondamento della valutazione.
- ✓ È necessaria competenza, esperienza, ed estro

Grazie per l'attenzione